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Noisy Network Coding
Sung Hoon Lim, Young-Han Kim, Abbas El Gamal, and Sae-Young Chung

Abstract

A noisy network coding scheme for sending multiple sources over a general noisy network is

presented. For multi-source multicast networks, the scheme naturally extends both network coding

over noiseless networks by Ahlswede, Cai, Li, and Yeung, andcompress–forward coding for the relay

channel by Cover and El Gamal to general discrete memorylessand Gaussian networks. The scheme also

recovers as special cases the results on coding for wirelessrelay networks and deterministic networks

by Avestimehr, Diggavi, and Tse, and coding for wireless erasure networks by Dana, Gowaikar, Palanki,

Hassibi, and Effros. The scheme involves message repetition coding, relay signal compression, and

simultaneous decoding. Unlike previous compress–forwardschemes, where independent messages are

sent over multiple blocks, the same message is sent multipletimes using independent codebooks as in the

network coding scheme for cyclic networks. Furthermore, the relays do not use Wyner–Ziv binning as in

previous compress–forward schemes, and each decoder performs simultaneous joint typicality decoding

on the received signals from all the blocks without explicitly decoding the compression indices. A

consequence of this new scheme is that achievability is proved simply and more generally without

resorting to time expansion to extend results for acyclic networks to networks with cycles. The noisy

network coding scheme is then extended to general multi-source networks by combining it with decoding

techniques for interference channels. For the Gaussian multicast network, noisy network coding improves

the previously established gap to the cutset bound. We also demonstrate through two popular AWGN

network examples that noisy network coding can outperform conventional compress–forward, amplify–

forward, and hash–forward coding schemes.
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I. INTRODUCTION

Consider theN -node discrete memoryless network depicted in Figure 1. Each node wishes to send a

message to a set of destination nodes while acting as a relay for messages from other nodes. What is

the capacity region of this network, that is, the set of ratesat which the nodes can reliably communicate

their messages? What is the coding scheme that achieves the capacity region? These questions are at the

heart of network information theory, yet complete answers remain elusive.

p(y1, . . . , yN |x1, x2, . . . , xN )
M1 → (X1, Y1)

(XN , YN )←MN

M2 → (X2, Y2)

Mk → (Xk, Yk)

Fig. 1. AnN -node discrete memoryless network.

Some progress has been made toward answering these questions in the past forty years. In [1], [2], a

general cutset outer bound on the capacity region of this network was established. This bound generalizes

the max-flow min-cut theorem for noiseless single-source unicast networks [3], [4], and has been shown

to be tight for several other classes of networks.

In their seminal paper on network coding [5], Ahlswede, Cai,Li, and Yeung showed that the capacity

of noiseless single-source multicast networks coincides with the cutset bound, thus generalizing the max-

flow min-cut theorem to multiple destinations. Each relay inthe network coding scheme sends a function

of its incoming signals over each outgoing link instead of simply forwarding incoming signals. Their

proof of the network coding theorem is done in two steps. For acyclic networks, relay mappings are

randomly generated and they show that the message is correctly decoded with high probability provided

the rate is below the cutset bound. This proof is then extended to cyclic networks by constructing an

acyclic time-expanded network and relating achievable rates and codes for the time-expanded network to

those for the original cyclic network.

The network coding theorem has been extended in several directions. Dana, Gowaikar, Palanki, Hassibi,

and Effros [6] studied the multiple-source multicast erasure network as a simple model for a wireless
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data network with packet loss. They showed that the capacityregion coincides with the cutset bound

and is achieved via network coding. Ratnakar and Kramer [7] extended network coding to characterize

the multicast capacity for single-source deterministic networks with broadcast but no interference at the

receivers. Avestimehr, Diggavi, and Tse [8] further extended this result to deterministic networks with

broadcastand interference to obtain a lower bound on capacity that coincides with the cutset bound when

the channel output is a linear function of input signals overa finite field. Their proof is again done in

two steps. As in the original proof of the network coding theorem, random coding is used to establish

the lower bound forlayered deterministic networks. A time-expansion technique is then used to extend

the capacity lower bound to arbitrary nonlayered deterministic networks.

In an earlier and seemingly unrelated line of investigation, van der Meulen [9] introduced the relay

channel with a single sourceX1, single destinationY3, and single relay with transmitter–receiver pair

(X2, Y2). Although the capacity for this channel is still not known ingeneral, several nontrivial upper

and lower bounds have been developed. In [10], Cover and El Gamal proposed the compress–forward

coding scheme in which the relay compresses its noisy observation of the source signal and forwards

the compressed description to the destination. Despite itssimplicity, compress–forward was shown to

be optimal for classes of deterministic [11] and modulo-sum[12] relay channels. The Cover–El Gamal

compress–forward lower bound on capacity has the form

C ≥ max
p(x1)p(x2)p(ŷ2|y2,x2)

I(X1; Ŷ2, Y3|X2), (1)

where the maximum is over all pmfsp(x1)p(x2)p(ŷ2|y2, x2) such thatI(X2;Y3) ≥ I(Y2; Ŷ2|X2, Y3). This

lower bound was established using a block Markov coding scheme—in each block the sender transmits

a new message, and the relay compresses its received signal and sends the bin index of the compression

index to the receiver using Wyner–Ziv coding [13]. Decodingis performed sequentially. At the end of

each block, the receiver first decodes the compression indexand then uses it to decode the message sent

in the previous block. Kramer, Gastpar, and Gupta [14] used an extension of this scheme to establish

a compress–forward lower bound on the capacity of general relay networks. Around the same time,

El Gamal, Mohseni, and Zahedi [15] put forth the equivalent characterization of the compress–forward

lower bound

C ≥ max
p(x1)p(x2)p(ŷ2|y2,x2)

min{I(X1; Ŷ2, Y3|X2), I(X1,X2;Y3)− I(Y2; Ŷ2|X1,X2, Y3)}. (2)

As we will see, this characterization motivates a more general way to extend compress–forward to

networks.
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In this paper, we describe a noisy network coding scheme thatextends and unifies the above results. On

the one hand, the scheme naturally extends compress–forward coding to noisy networks. The resulting

inner bound on the capacity region extends the equivalent characterization in (2), rather than the original

characterization in (1). On the other hand, our scheme includes network coding and its variants as special

cases. Hence, while the coding schemes for deterministic networks and erasure networks can be viewed as

bottom-up generalizations of network coding to more complicated networks, our coding scheme represents

a top-down approach for general noisy networks.

The noisy coding scheme employs block Markov message repetition coding, relay signal compression,

and simultaneous decoding. Instead of sending different messages over multiple blocks and decoding one

message at a time as in previous compress–forward coding schemes [10], [14], the source transmits the

same message over multiple blocks using independently generated codebooks. Although a similar message

repetition scheme is implicitly used in the time expansion technique for cyclic noiseless networks [5]

and nonlayered deterministic networks [8], our achievability proof does not require a two-step approach

that depends on the network topology. The relay operation isalso simpler than previous compress–

forward schemes—the compression index of the received signal in each block is sent without Wyner–Ziv

binning. After receiving the signals from all the blocks, each destination node performs simultaneous

joint typicality decoding of the messages without explicitly decoding the compression indices. As we

will demonstrate, this results in better performance than previous schemes in [14], [16], [17], [18], [19]

for networks with more than one relay node or multiple messages.

The simplicity of our scheme makes it straightforward to combine with decoding techniques for

interference channels. Indeed, the noisy network coding scheme can be viewed as transforming a multi-

hop relay network into a single-hop interference network where the channel outputs are compressed

versions of the received signals. We develop two coding schemes for general multiple source networks

based on this observation. At one extreme, noisy network coding is combined with decoding all messages,

while at the other, interference is treated as noise.

We apply these noisy network coding schemes to Gaussian networks. For the multiple-source multi-

cast case, we establish an inner bound that improves upon previous capacity approximation results by

Avestimehr, Diggavi, and Tse [8] and Perron [20] with a tighter gap to the cutset bound. We then show

that noisy network coding can outperform other specializedschemes for two-way relay channels [16],

[17] and interference relay channels [18], [19].

The rest of the paper is organized as follows. In the next section, we formally define the problem of

communicating multiple sources over a general network and discuss the main results. We also show that
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previous results on network coding are special cases of our main theorems and compare noisy network

coding to other schemes. In Section III, we present the noisynetwork coding scheme for multiple-source

multicast networks. In Section IV, the scheme is extended togeneral multiple-source networks. Results

on Gaussian networks are discussed in Section V.

Throughout the paper, we follow the notation in [21]. In particular, a sequence of random variables

with node indexk and time indexi ∈ [1 : n] is denoted asXn
k = (Xk1, . . . ,Xkn). A set of random

variables is denoted asX(A) = {Xk : k ∈ A}.

II. PROBLEM SETUP AND MAIN RESULTS

The N -node discrete memoryless network (DMN)(
∏N

k=1Xk, p(y
N |xN ),

∏N
k=1 Yk) depicted in Fig-

ure 1 consists ofN sender–receiver alphabet pairs(Xk,Yk), k ∈ [1 : N ] := {1, . . . , N}, and a collection

of conditional pmfsp(y1, . . . , yN |x1, . . . , xN ). Each nodek ∈ [1 : N ] wishes to send a messageMk to

a set of destination nodes,Dk ⊆ [1 : N ]. Formally, a(2nR1 , . . . , 2nRN , n) code for a DMN consists of

N message sets[1 : 2nR1 ], . . . , [1 : 2nRN ], a set of encoders with encoderk ∈ [1 : N ] that assigns an

input symbolxki to each pair(mk, y
i−1
k ) for i ∈ [1 : n], and a set of decoders with decoderd ∈ ∪Nk=1Dk

that assigns message estimates(m̂kd : k ∈ Sd) to each(ynd ,md), whereSd := {k : d ∈ Dk} is the set of

nodes that send messages to destinationd. For simplicity we assumed ∈ Sd for all destination nodes.

We assume that the messagesMk, k ∈ [1 : N ], are independent of each other and each message is

uniformly distributed over its message set. The average probability of error is defined as

P (n)
e = P{M̂kd 6= Mk for somed ∈ Dk, k ∈ [1 : N ]}.

A rate tuple(R1, . . . , RN ) is said to be achievable if there exists a sequence of(2nR1 , . . . , 2nRN , n)

codes withP (n)
e → 0 asn→∞. The capacity region of the DMN is the closure of the set of achievable

rate tuples.

We are ready to state our main results.

Multiple-source multicast networks: In Section III, we establish the following noisy network coding

theorem for multicasting multiple sources over a DMN. The coding scheme and techniques used to prove

this theorem, which we highlighted earlier, constitute thekey contributions of our paper.

Theorem 1: LetD = D1 = · · · = DN . A rate tuple(R1, . . . , RN ) is achievable for the DMNp(yN |xN )

if there exists some joint pmfp(q)
∏N

k=1 p(xk|q)p(ŷk|yk, xk, q) such that

R(S) < min
d∈Sc∩D

I(X(S); Ŷ (Sc), Yd|X(Sc), Q) − I(Y (S); Ŷ (S)|XN , Ŷ (Sc), Yd, Q) (3)
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for all cutsets S ⊆ [1 : N ] with Sc ∩ D 6= ∅, whereR(S) =
∑

k∈S Rk.

This inner bound has a similar structure to the cutset outer bound given by

R(S) ≤ I(X(S);Y (Sc)|X(Sc)) (4)

for all S ⊆ [1 : N ] with Sc∩D 6= ∅. The first term of (4), however, hasY replaced by the “compressed”

versionŶ . Another difference between the bounds is the negative termappearing in (3), which quantifies

the rate requirement to convey the compressed version. In addition, the maximum in (3) is only over

independentXN .

Theorem 1 can be specialized to several important network models as follows:

Noiseless networks: Consider a noiseless network modeled by a weighted directedgraphG = (N , E , C),

whereN = [1 : N ] is the set of nodes,E ⊆ [1 : N ]× [1 : N ] is the set of edges, andC = {Cjk ∈ R+ :

(j, k) ∈ E} is the set of link capacities. Each edge(j, k) ∈ E carries an input symbolxjk ∈ Xjk with

link capacityCjk = log |Xjk|, resulting in the channel output at nodek as Yk = {Xjk : (j, k) ∈ E}.

By setting Ŷk = Yk for all k and evaluating Theorem 1 with the uniform pmf onXN , it can be easily

shown that inner bound (3) coincides with the cutset bound, and thus the capacity region is the set of

rate tuples(R1, . . . , RN ) such that

R(S) ≤
∑

(j,k)∈E
j∈S,k∈Sc

Cjk. (5)

This recovers previous results in [5] for the single-sourcecase and [6] for the multiple-source case.

Relay channels: Consider the relay channelp(y2, y3|x1, x2). It can be easily shown that the inner bound (3)

reduces to the alternative characterization of the compress–forward lower bound in (2).

Erasure networks: Consider the erasure multiple-source multicast network inwhich the channel output

at nodek ∈ [1 : N ] is Yk = {Yjk : j ∈ [1 : N ]}, whereYjk = ε if it is erased, andYjk = Xj, otherwise.

Assume further that the network erasure pattern is known at the destination nodes. TakinĝYk = Yk,

k ∈ [1 : N ] and the uniform pmf onXN as in the noiseless case, inner bound (3) reduces to

R(S) ≤
∑

j∈S

(

log |Xj |(1− P{link (j, k) is erased for allk ∈ Sc})
)

. (6)

It can be also shown that the inner bound coincides with the cutset bound and thus characterizes the

capacity region. This recovers the previous result in [6].

Deterministic networks: SupposeYk = gk(X1, . . . ,XN ), k ∈ [1 : N ]. By settingŶk = Yk, k ∈ [1 : N ],

Theorem 1 implies that a rate tuple(R1, . . . , RN ) is achievable for the deterministic network if there
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exists some pmfp(q)
∏N

k=1 p(xk|q) such that

R(S) < I(X(S);Y (Sc)|X(Sc), Q) = H(Y (Sc)|X(Sc), Q) (7)

for all S ⊆ [1 : N ] with Sc ∩ D 6= ∅. This recovers previous results in [8] for the single-source case

and in [20] for the multiple-source case. Note that the lowerbound (7) is tight when the cutset bound

is attained by the product pmf, for example, as in the deterministic network without interference [7] or

the finite-field linear deterministic networkYk =
∑N

j=1 gjkXj [8].

Note that in all the above special cases, the channel output at nodek can be expressed as a deterministic

function of the input symbols(X1, . . . ,XN ) and the destination output symbolYd, i.e.,

Yk = gdk(X1, . . . ,XN , Yd) for everyk ∈ [1 : N ] andd ∈ D. (8)

Under this structure, the inner bound in Theorem 1 can be simplified by substitutingŶk = Yk for

k ∈ [1 : N ] in (3) to obtain the following generalization.

Corollary 1: Let D = D1 = · · · = DN . A rate tuple(R1, . . . , RN ) is achievable for the semideter-

ministic DMN (8) if there exists some joint pmfp(q)
∏N

k=1 p(xk|q) such that

R(S) < I(X(S);Y (Sc)|X(Sc), Q) (9)

for all S ⊆ [1 : N ] with Sc ∩D 6= ∅.

We also show in Appendix C that our noisy network coding scheme can strictly outperform the

extension of the original compress–forward scheme for the relay channel to networks in [14, Th 3].

General multiple-source networks: We extend the noisy network coding theorem to general multiple-

source networks. As a first step, we note that Theorem 1 continues to hold for general networks with

multicast completion of destination nodes, that is, when every message is decodedby all destination

nodesD = ∪Nk=1Dk. Thus, we can obtain an inner bound on the capacity region forthe DMN in the

same form as (3) withD = ∪Nk=1Dk.

This multicast-completion inner bound can be improved by noting that noisy network coding trans-

forms a multi-hop relay networkp(yN |xN ) into a single-hop interference networkp(ỹN |xN ), where the

effective channel output at decoderk is Ỹk = (Xk, Yk, Ŷ1, . . . , ŶN ) and the compressed channel outputs

(Ŷ1, . . . , ŶN ) are conveyed to decoders with some rate penalty. This observation leads to a modified

decoding rule that does not require each destination to decode unintended messages correctly, resulting

in the following improved inner bound.
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Theorem 2: A rate tuple (R1, . . . , RN ) is achievable for the DMN if there exists some joint pmf

p(q)
∏N

k=1 p(xk|q)p(ŷk|yk, xk, q) such that

R(S) < min
d∈Sc∩D(S)

I(X(S); Ŷ (Sc), Yd|X(Sc), Q)− I(Y (S); Ŷ (S)|XN , Ŷ (Sc), Yd, Q) (10)

for all cutsetsS ⊆ [1 : N ] with Sc ∩ D(S) 6= ∅, whereD(S) := ∪k∈SDk.

The proof of this theorem is given in Subsection IV-A.

As an alternative, each destination node can simply treat interference as noise rather than decoding it.

Using this approach, we establish the following inner boundon the capacity region.

Theorem 3: A rate tuple (R1, . . . , RN ) is achievable for the DMN if there exists some joint pmf

p(q)
∏N

k=1 p(uk, xk|q)p(ŷk|yk, uk, q) with

R(T ) <I(X(T ), U(S); Ŷ (Sc), Yd|X(T c), U(Sc), Q) − I(Y (S); Ŷ (S)|X(Sd), U
N , Ŷ (Sc), Yd, Q) (11)

for all S ⊆ [1 : N ], d ∈ D(S), andS ∩ Sd ⊆ T ⊆ Sd such thatSc ∩D(S) 6= ∅, whereT c = Sd\T .

Unlike the coding schemes in Theorems 1 and 2 where each node maps both its own message and the

compression index to a single codeword, here each node applies superposition coding [22] for forwarding

the compression index along with its own message. (Note thatwhen a node does not have its own message

and it acts only as a relay, there is no difference in the relayoperation from the previous schemes.) The

details are given in Subsection IV-B.

Gaussian networks: In Section V, we present an extension of the above results to Gaussian networks and

compare the performance of noisy network coding to other specialized coding schemes for two popular

Gaussian networks.

Consider the Gaussian network

Y N = GXN + ZN , (12)

whereG ∈ RN×N is the channel gain matrix andZN is a vector of independent Gaussian random

variables with zero mean and unit variance. We further assume average power constraintP on each

senderXk.

In Subsection V-A, we establish the following result on the multicast capacity region of this general

Gaussian network.

Theorem 4: Let D = D1 = · · · = DN . For any rate tuple(R1, . . . , RN ) in the cutset outer bound,

there exists(R′
1, . . . , R

′
N ) in the inner bound in Theorem 1 for the AWGN network (12) such that

∑

k∈S

(Rk −R′
k) ≤

|S|

2
+

min{|S|, |Sc|}

2
log(2|S|)

March 15, 2010 DRAFT
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for all S ⊆ [1 : N ] with Sc ∩D 6= ∅.

This theorem implies that the gap between the cutset bound and our inner bound is less than or equal to

(N/4) log(2N) for N > 3, regardless of the values of the channel gain matrixG and power constraintP .

We also demonstrate through the following two examples thatnoisy network coding can outperform

previous coding schemes, some of which are developed specifically for these channel models:

Two-way relay channel (Subsection V-B): Consider the AWGN two-way relay channel

Y1 = g21X2 + g31X3 + Z1,

Y2 = g12X1 + g32X3 + Z2, (13)

Y3 = g13X1 + g23X2 + Z3,

where the channel gains areg12 = g21 = 1, g13 = g31 = d−γ/2 and g23 = g32 = (1 − d)−γ/2, and

d ∈ [0, 1] is the location of the relay node between nodes 1 and 2 (which are unit distance apart). Source

nodes1 and2 wish to exchange messages reliably with the help of relay node 3. Various coding schemes

for this channel have been investigated in [16], [17]. In Figure 2, we compare the performance of noisy

network coding (Theorem 2) to amplify–forward (AF) and an extension of compress–forward (CF) for

d ∈ [0, 1/2] andγ = 3. Note that noisy network coding outperforms the other two schemes coinciding

with the compress–forward only when the relay is midway between nodes 1 and 2 (d = 1/2) and when

it coincides with node 1 (d = 0).
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m
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Fig. 2. Comparison of coding schemes forP = 10.
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Interference relay channel (Subsection V-C): Consider the AWGN interference relay channel with or-

thogonal receiver components in Figure 3.

Z4 Z3

Z5

X1

X2

Y4

Y5

Y3 R0

g13

g23
g24

g15

g25

g14

Fig. 3. AWGN interference relay channel.

The channel outputs are

Yj = g1jX1 + g2jX2 + Zj , j = 3, 4, 5,

where gij is the channel gain of link(i, j). Source node 1 wishes to send a message to destination

node 4, while source node 2 wishes to send a message to destination node 5. Relay node 3 helps

the communication of this interference channel by sending some information aboutY3 over a common

noiseless link of rateR0 to both destination nodes. In Figure 4, we compare noisy network coding

(Theorems 2 and 3) to compress–forward (CF) and hash–forward (HF) in [19]. The curve representing

noisy network coding depicts the maximum of achievable sum rates in Theorems 2 and 3. Note that,

although not shown in the figure, Theorem 3 alone outperformsthe other two schemes for all channel gains

and power constraints. At high signal-to-noise ratio (SNR), Theorem 2 provides further improvement,

since decoding other messages is a better strategy when interference is strong.

III. N OISY NETWORK CODING FORMULTICAST

To illustrate the main idea of the noisy network coding scheme and highlight the differences from

the standard compress–forward coding scheme [10], [14], wefirst prove Theorem 1 for the 3-node relay

channel and then extend the proof to general multicast networks.

Let xkj denote(xk,(j−1)n+1, . . . , xk,jn), j ∈ [1 : b]; thusxbnk = (xk1, . . . , xk,nb) = (xk1, . . . ,xkb) =

xb
k. To send a messagem ∈ [1 : 2nbR], the source node transmitsx1j(m) for each blockj ∈ [1 : b].

In block j, the relay finds a “compressed” versionŷ2j of the relay outputy2j conditioned onx2j , and
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Fig. 4. Comparison of coding schemes forg14 = g25 = 1, g15 = g24 = g13 = 0.5, g13 = 0.1.

transmits a codewordx2,j+1(ŷ2j) in the next block. Afterb block transmissions, the decoder finds the

correct messagem ∈ [1 : 2nbR] using (y31, . . . ,y3b) by joint typical decoding for each ofb blocks

simultaneously. The details are as follows.

Codebook generation: Fix p(x1)p(x2)p(ŷ2|y2, x2). We randomly and independently generate a codebook

for each block.

For eachj ∈ [1 : b], randomly and independently generate2nbR sequencesx1j(m), m ∈ [1 : 2nbR],

each according to
∏n

i=1 pX1
(x1,(j−1)n+i). Similarly, randomly and independently generate2nR̂2 sequences

x2j(lj−1), lj−1 ∈ [1 : 2nR̂2 ], each according to
∏n

i=1 pX2
(x2,(j−1)n+i). For eachx2j(lj−1), lj−1 ∈ [1 :

2nR̂2 ], randomly and conditionally independently generate2nR̂2 sequenceŝy2j(lj |lj−1), lj ∈ [1 : 2nR̂2 ],

each according to
∏n

i=1 pŶ2|X2

(ŷ2,(j−1)n+i|x2,(j−1)n+i(lj−1)).

This defines the codebook

Cj =
{

x1j(m),x2j(lj−1), ŷ2j(lj |lj−1) : m ∈ [1 : 2nbR], lj , lj−1 ∈ [1 : 2nR̂2 ]
}

for j ∈ [1 : b].

Encoding and decoding are explained with the help of Table I.

Encoding: Let m be the message to be sent. The relay, upon receivingy2j at the end of blockj ∈ [1 : b],
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Block 1 2 3 · · · b− 1 b

X1 x11(m) x12(m) x13(m) . . . x1,b−1(m) x1b(m)

Y2 ŷ21(l1|1), l1 ŷ22(l2|l1), l2 ŷ23(l3|l2), l3 . . . ŷ2,b−1(lb−1|lb−2), lb−1 ŷ2b(lb|lb−1), lb

X2 x21(1) x22(l1) x23(l2) . . . x2,b−1(lb−2) x2b(lb−1)

Y3 ∅ ∅ ∅ . . . ∅ m̂

TABLE I

NOISY NETWORK CODING FOR THE RELAY CHANNEL.

finds an indexlj such that

(ŷ2j(lj |lj−1),y2j ,x2j(lj−1)) ∈ T
(n)
ǫ′ ,

where l0 = 1 by convention. If there is more than one such index, choose one of them at random.

If there is no such index, choose an arbitrary index at randomfrom [1 : 2nR̂2 ]. The codeword pair

(x1j(m),x2j(lj−1)) is transmitted in blockj ∈ [1 : b].

Decoding: Let ǫ > ǫ′. At the end of blockb, the decoder finds a unique messagem̂ ∈ [1 : 2nbR] such

that

(x1j(m̂), ŷ2j(l̂j |l̂j−1),x2j(l̂j−1),y3j) ∈ T
(n)
ǫ for all j ∈ [1 : b]

for somel̂1, l̂2, . . . , l̂b. If there is none or more than one such message, it declares anerror.

Analysis of the probability of error: Let M denote the message sent at the source node andLj denote

the indices chosen by the relay at blockj ∈ [1 : b]. Define

E0 :=
b
⋃

j=1

{

(Ŷ2j(lj |Lj−1),X2j(Lj−1),Y2j) 6∈ T
(n)
ǫ′ for all lj

}

,

Em :=
{

(X1j(m), Ŷ2j(lj |lj−1),X2j(lj−1),Y3j) ∈ T
(n)
ǫ , j ∈ [1 : b] for somel1, l2, . . . , lb

}

.

To bound the probability of error, assume without loss of generality thatM = 1. Then the probability

of error is upper bounded by

P(E) ≤ P(E0) + P(Ec0 ∩ E
c
1) + P(∪m6=1Em).

By the covering lemma [21],P(E0) → 0 asn → ∞, if R2 > I(Ŷ2;Y2|X2) + δ(ǫ′). By the conditional

typicality lemma [21],P(Ec0 ∩ E
c
1)→ 0 asn→∞.
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To boundP(∪m6=1Em), assume without loss of generality that(L1, . . . , Lb) = (1, . . . , 1); recall the

symmetry of the codebook construction. Forj ∈ [1 : b], m ∈ [1 : 2nbR], and lj−1, lj ∈ [1 : 2nR̂2 ], define

the events

Aj(m, lj−1, lj) :=
{

(X1j(m), Ŷ2j(lj |lj−1),X2j(lj−1),Y3j) ∈ T
(n)
ǫ

}

.

Then,

P(Em) = P(∪lb ∩
b
j=1 Aj(m, lj−1, lj))

≤
∑

lb

P(∩bj=1Aj(m, lj−1, lj))

=
∑

lb

b
∏

j=1

P(Aj(m, lj−1, lj)) (14)

≤
∑

lb

b
∏

j=2

P(Aj(m, lj−1, lj)),

where equality (14) follows since the codebook is generatedindependently for each blockj and the

channel is memoryless. Note that ifm 6= 1 and lj−1 = 1, thenX1j(m) ∼
∏n

i=1 pX1
(x1,(j−1)n+i) is

independent of(Ŷ2j(lj |lj−1),X2j(lj−1),Y3j) (given Lj−1 = Lj = 1). Hence, by the joint typicality

lemma [21],

P(Aj(m, lj−1, lj)) = P
{

(X1j(m), Ŷ2j(lj |lj−1),X2j(lj−1),Y3j) ∈ T
(n)
ǫ

}

≤ 2−n(I(X1;Ŷ2,Y3|X2)−δ(ǫ))

=: 2−n(I1−δ(ǫ)). (15)

Similarly, if m 6= 1 and lj−1 6= 1, then

(X1j(m),X2j(lj−1), Ŷ2j(lj |lj−1)) ∼
n
∏

i=1

pX1
(x1,(j−1)n+i)pX2,Ŷ2

(x2,(j−1)n+i, ŷ2,(j−1)n+i)

is independent ofY3j (givenLj−1 = Lj = 1). Hence, by the joint typicality lemma

P(Aj(m, lj−1, lj)) ≤ 2−n(I(X1,X2;Y3)+I(Ŷ2;X1,Y3|X2)−δ(ǫ)) =: 2−n(I2−δ(ǫ)). (16)

If the binary sequencelb−1 hask 1s, then by (15) and (16),

b
∏

j=2

P(Aj(m, lj−1, lj)) ≤ 2−n(kI1+(b−1−k)I2−(b−1)δ(ǫ)).
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Therefore

∑

lb

b
∏

j=2

P(Aj(m, lj−1, lj)) =
∑

lb

∑

lb−1

b
∏

j=2

P(Aj(m, lj−1, lj))

≤
∑

lb

b−1
∑

k=0

(

b− 1

k

)

2n(b−1−k)R̂22−n(kI1+(b−1−k)I2−(b−1)δ(ǫ))

=
∑

lb

b−1
∑

k=0

(

b− 1

k

)

2−n(kI1+(b−1−k)(I2−R̂2)−(b−1)δ(ǫ))

≤
∑

lb

b−1
∑

k=0

(

b− 1

k

)

2−n((b−1)(min{I1, I2−R̂2}−δ(ǫ)))

= 2nR̂22b−1 · 2−n((b−1)(min{I1, I2−R̂2}−δ(ǫ))).

Thus,
∑

m6=1

∑

lb

b
∏

j=2

P(Aj(m, lj−1, lj) | Lj−1 = Lj = 1)→ 0

asn→∞, provided that

R <
b− 1

b
(min{I1, I2 − R̂2} − δ(ǫ)) −

1

b
R̂2.

Finally, by eliminatingR̂2 > I(Ŷ2;Y2|X2) + δ(ǫ′) and lettingb→∞, we have shown the achievability

of any rate

R < min{I(X1; Ŷ2, Y3|X2), I(X1,X2;Y3)− I(Ŷ2;Y2|X1,X2, Y3)} − δ(ǫ)− δ(ǫ′).

This concludes the proof of Theorem 1 for the special case of the relay channel.

We now describe the noisy network coding scheme for multiple-source multicast over a general DMN

p(yN |xN ). For simplicity of notation, we consider the caseQ = ∅. Achievability for an arbitrary time-

sharing random variableQ can be proved using the coded time sharing technique [21].

Codebook generation: Fix
∏N

k=1 p(xk)p(ŷk|yk, xk). We randomly and independently generate a codebook

for each block. For eachj ∈ [1 : b] andk ∈ [1 : N ], randomly and independently generate2nbRk×2nR̂k se-

quencesxk,j(mk, lk,j−1), mk ∈ [1 : 2nbRk ], lk,j−1 ∈ [1 : 2nR̂k ], each according to
∏n

i=1 pXk
(xk,(j−1)n+i).

For each nodek ∈ [1 : N ] and eachxkj(mk, lk,j−1), mk ∈ [1 : 2nbRk ], lk,j−1 ∈ [1 : 2nR̂k ], randomly and

conditionally independently generate2nR̂k sequenceŝykj(lkj|mk, lk,j−1), lkj ∈ [1 : 2nR̂k ], each according

to
∏n

i=1 pŶk|Xk
(ŷk,(j−1)n+i|xk,(j−1)n+i(mk, lk,j−1)). This defines the codebook

Cj =
{

xkj(mk, lk,j−1), ŷkj(lkj |mk, lk,j−1) : mk ∈ [1 : 2nbRk ], lkj , lk,j−1 ∈ [1 : 2nR̂k ], k ∈ [1 : N ]
}
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for j ∈ [1 : b].

Encoding: Let (m1, . . . ,mN ) be the messages to be sent. Each nodek ∈ [1 : N ], upon receivingykj at

the end of blockj ∈ [1 : b], finds an indexlkj such that

(ŷkj(lkj|mk, lk,j−1),ykj ,xkj(mk, lk,j−1)) ∈ T
(n)
ǫ′ ,

wherelk0 = 1, k ∈ [1 : N ], by convention. If there is more than one such index, choose one of them at

random. If there is no such index, choose an arbitrary index at random from[1 : 2nR̂k ]. Then each node

k ∈ [1 : N ] transmits the codewordxkj(mk, lk,j−1) in block j ∈ [1 : b].

Decoding: Let ǫ > ǫ′. At the end of blockb, decoderd ∈ D finds a unique index tuple(m̂1d, . . . , m̂Nd),

wherem̂kd ∈ [1 : 2nbRk ] for k 6= d andm̂dd = md, such that there exist some(l̂1j , . . . , l̂Nj), l̂kj ∈ [1 :

2nR̂k ], k 6= d and l̂dj = ldj , j ∈ [1 : b], satisfying

(x1j(m̂1d, l̂1,j−1), . . . ,xNj(m̂Nd, l̂N,j−1),

ŷ1j(l̂1j |m̂1d, l̂1,j−1), . . . , ŷNj(l̂Nj |m̂Nd, l̂N,j−1),ydj) ∈ T
(n)
ǫ

for all j ∈ [1 : b].

Analysis of the probability of error: Let Mk denote the message sent at nodek ∈ [1 : N ] and Lkj,

k ∈ [1 : N ], j ∈ [1 : b], denote the index chosen by nodek for block j. To bound the probability of error

for decoderd ∈ D, assume without loss of generality that(M1, . . . ,MN ) = (1, . . . , 1) =: 1. Define

E0 :=
b
⋃

j=1

N
⋃

k=1

{

(Ŷkj(lkj|1, Lk,j−1),Xkj(1, Lk,j−1),Ykj) 6∈ T
(n)
ǫ′ for all lkj

}

Em :=
{

(X1j(m1, l1,j−1), . . . ,XNj(mN , lN,j−1),

Ŷ1j(l1j |m1, l1,j−1), . . . , ŶNj(lNj |mN , lN,j−1),Ydj) ∈ T
(n)
ǫ ,

j ∈ [1 : b], for some(l1, . . . , lb), whereldj = Ldj , j ∈ [1 : b]
}

.

Here,lj = (l1j , . . . , lNj) for j ∈ [1 : b]. Then the probability of error is upper bounded as

P(E) ≤ P(E0) + P(Ec0 ∩ E
c
1) + P(∪m 6=1Em), (17)

wherem := (m1, . . . ,mN ) such thatmd = 1. As in the3-node case, by the covering lemma,P(E0)→ 0

as n → ∞, if R̂k > I(Ŷk;Yk|Xk) + δ(ǫ′), k ∈ [1 : N ], and by the conditional typicality lemma

P(Ec0∩E
c
1
)→ 0 asn→∞. For the third term, assume without loss of generality thatL1 = · · · = Lb = 1,
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whereLj := (L1j , . . . , LNj). Define the events

Aj(m, lj−1, lj) :=
{

(X1j(m1, l1,j−1), . . . ,XNj(mN , lN,j−1),

Ŷ1j(l1j |m1, l1,j−1), . . . , ŶNj(lNj |mN , lN,j−1),Ydj) ∈ T
(n)
ǫ

}

for m 6= 1 and all lj . Then,

P(Em) = P(∪lb ∩
b
j=1 Aj(m, lj−1, lj))

≤
∑

lb

P(∩bj=1Aj(m, lj−1, lj))

=
∑

lb

b
∏

j=1

P(Aj(m, lj−1, lj)) (18)

≤
∑

lb

b
∏

j=2

P(Aj(m, lj−1, lj)),

where (18) follows since the codebook is generated independently for each blockj and the channel is

memoryless.

For eachlb andj ∈ [2 : b], let Sj(m, lb) ⊆ [1 : N ] such thatSj(m, lb) = {k : mk 6= 1 or lk,j−1 6= 1}.

Note thatSj(m, lb) depends only on(m, lj−1) and hence we write it asSj(m, lj−1). We further define

T (m) ⊆ [1 : N ] such thatT (m) = {k : mk 6= 1}. From the definitions we can see thatT (m) ⊆

Sj(m, lj−1) andd ∈ Scj (m, lj−1) ⊆ T
c(m).

DefineXj(Sj(m, lj−1)) to be the set ofXkj(mk, lk,j−1), k ∈ Sj(m, lj−1), wheremk andlk,j−1 are the

corresponding elements inm andlb, respectively. Similarly definêYj(Sj(m, lj−1)) andYj(Sj(m, lj−1)).

Then, by the joint typicality lemma and the fact that

(

X(Sj(m, lj−1)), Ŷ(Sj(m, lj−1))
)

∼
∏

k∈Sj(m,lj−1)

n
∏

i=1

pXk
(xk,(j−1)n+i) pŶk|Xk

(ŷk,(j−1)n+i|xk,(j−1)n+i)

is independent of
(

X(Scj (m, lj−1)), Ŷ(Scj (m, lj−1)),Ydj

)

(givenLj−1 = Lj = 1), we have

P(Aj(m, lj−1, lj)) ≤ 2−n(I1(S(m,lj−1))+I2(S(m,lj−1))−δ(ǫ)),

where

I1(S) := I(X(S); Ŷ (Sc), Yd|X(Sc)),

I2(S) :=
∑

k∈S

I(Ŷk; Ŷ (Sc ∪ {k′ ∈ S : k′ < k}), Yd,X
N |Xk).
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Furthermore, from the definitions ofT (m) andSj(m, lj−1), if m 6= 1 with md = 1, then

∑

lj−1

2−n(I1(Sj(m,lj−1))+I2(Sj(m,lj−1))−δ(ǫ))

≤
∑

S⊆[1:N ]
T (m)⊆S,d∈Sc

∑

lj−1:Sj(m,lj−1)=S

2−n(I1(Sj(m,lj−1))+I2(Sj(m,lj−1))−δ(ǫ))

≤
∑

S⊆[1:N ]
T (m)⊆S,d∈Sc

2−n(I1(S)+I2(S)−
∑

k∈S R̂k−δ(ǫ))

≤ 2N−12−n(minS(I1(S)+I2(S)−
∑

k∈S
R̂k−δ(ǫ))),

where the minimum is overS ⊆ [1 : N ] such thatT (m) ⊆ S andd ∈ Sc. Hence,

∑

m 6=1

∑

lb

b
∏

j=2

P(Aj(m, lj−1, lj))

=
∑

m 6=1

∑

lb

∑

lb−1

b
∏

j=2

P(Aj(m, lj−1, lj))

=
∑

m 6=1

∑

lb

b
∏

j=2

∑

lj−1

P(Aj(m, lj−1, lj))

≤
∑

m 6=1

∑

lb

b
∏

j=2





∑

lj−1

2−n(I1(Sj(m,lj−1))+I2(Sj(m,lj−1))−δ(ǫ))





≤
∑

T ⊆[1:N ]
T 6=∅,d∈T c

2
∑

k∈T nbRk 2
∑

k 6=d
nR̂k2(N−1)(b−1) 2n(−(b−1)minS(I1(S)+I2(S)−

∑
k∈S R̂k−δ(ǫ))), (19)

where the minimum in (19) is overS ⊆ [1 : N ] such thatT ⊆ S, d ∈ Sc. Hence, (19) tends to zero as

n→∞ if

R(T ) <
b− 1

b



 min
S⊆[1:N ]

T ⊆S,d∈Sc

(

I1(S) + I2(S)−
∑

k∈S

R̂k

)

− δ(ǫ)



 −
1

b





∑

k 6=d

R̂k





for all T ⊆ [1 : N ] such thatT 6= ∅ andd ∈ T c. By eliminatingR̂k > I(Ŷk;Yk|Xk) + δ(ǫ′) and letting

b→∞, the probability of error tends to zero asn→∞ if

R(T ) < min
S⊆[1:N ]

T ⊆S,d∈Sc

(

I1(S) + I2(S)−
∑

k∈S

I(Ŷk;Yk|Xk)

)

− (N − 1)δ(ǫ′)− δ(ǫ)
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for all T ⊆ [1 : N ] such thatd ∈ T c. Finally, note that

I2(S)−
∑

k∈S

I(Ŷk;Yk|Xk) = −
∑

k∈S

I(Ŷk;Yk|X
N , Ŷ (Sc), Yd, Ŷ ({k′ ∈ S : k′ < k}))

= −
∑

k∈S

I(Ŷk;Y (S)|XN , Ŷ (Sc), Yd, Ŷ ({k′ ∈ S : k′ < k}))

= −I(Ŷ (S);Y (S)|XN , Ŷ (Sc), Yd).

Therefore, the probability of error tends to zero asn→∞ if

R(T ) < I(X(S); Ŷ (Sc),Yd|X(Sc))− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), Yd)− (N − 1)δ(ǫ′)− δ(ǫ) (20)

for all S,T ⊆ [1 : N ] such that∅ 6= T ⊆ S andd ∈ Sc. Since for everyS ⊆ [1 : N ] such thatS 6= ∅

andd ∈ Sc the inequalities withT ( S are inactive due to the inequality withT = S in (20), the set

of inequalities can be further simplified to

R(S) < I(X(S); Ŷ (Sc), Yd|X(Sc))− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), Yd)− (N − 1)δ(ǫ′)− δ(ǫ) (21)

for all S ⊆ [1 : N ] such thatd ∈ Sc. Thus, the probability of decoding error tends to zero for each

destination noded ∈ D asn→∞, provided that the rate tuple satisfies (21).

Hence, by the union of events bound, the probability of errorfor all destinations tends to zero as

n→∞ if the rate tuple(R1, . . . , RN ) satisfies

R(S) < min
d∈Sc∩D

I(X(S); Ŷ (Sc), Yd|X(Sc))− I(Y (S); Ŷ (S)|XN , Ŷ (Sc), Yd)

for all S ⊆ [1 : N ] such thatSc ∩ D 6= ∅ for some
∏N

k=1 p(xk)p(ŷk|yk, xk). Finally, by coded time

sharing, the probability of error tends to zero asn→∞ if the rate tuple(R1, . . . , RN ) satisfies

R(S) < min
d∈Sc∩D

I(X(S); Ŷ (Sc), Yd|X(Sc), Q) − I(Y (S); Ŷ (S)|XN , Ŷ (Sc), Yd, Q)

for all S ⊆ [1 : N ] such thatSc ∩D 6= ∅ for some
∏N

k=1 p(q)p(xk|q)p(ŷk|yk, xk, q). This completes the

proof of Theorem 1.

IV. EXTENSIONS TOGENERAL MULTIPLE-SOURCE NETWORKS

A. Proof of Theorem 2 via Multicast Completion with Implicit Decoding

We modify the decoding rule in the previous section to establish Theorem 2 as follows.

Decoding: At the end of blockb, decoderd ∈ ∪Nk=1Dk finds a unique index tuple{m̂kd : k ∈ Sd} such

that there exist some(m̂kd : k ∈ S
c
d) and(l̂1j , . . . , l̂Nj), wherem̂kd ∈ [1 : 2nbRk ] for k 6= d, m̂dd = md,
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l̂kj ∈ [1 : 2nR̂k ] for k 6= d, and l̂dj = ldj , j ∈ [1 : b], satisfying

(x1j(m̂1d, l̂1,j−1), . . . ,xNj(m̂Nd, l̂N,j−1),

ŷ1j(l̂1j |m̂1d, l̂1,j−1), . . . , ŷNj(l̂Nj |m̂Nd, l̂N,j−1),ydj) ∈ T
(n)
ǫ

for all j ∈ [1 : b].

The analysis of the probability of error is similar to that for Theorem 1 in Section III. For completeness,

the details are given in Appendix A.

B. Proof of Theorem 3 via Treating Interference as Noise

Codebook generation: Again we consider the caseQ = ∅. Fix
∏N

k=1 p(uk, xk)p(ŷk|yk, uk). We randomly

and independently generate a codebook for each block. For each j ∈ [1 : b] and k ∈ [1 : N ],

randomly and independently generate2nR̂k sequencesukj(lk,j−1), lk,j−1 ∈ [1 : 2nR̂k ], each according

to
∏n

i=1 pUk
(uk,(j−1)n+i). For eachk ∈ [1 : N ] and eachukj(lk,j−1), lk,j−1 ∈ [1 : 2nR̂k ], randomly

and conditionally independently generate2nbRk sequencesxkj(mk|lk,j−1), mk ∈ [1 : 2nbRk ], each

according to
∏n

i=1 pXk|Uk
(xk,(j−1)n+i|uk,(j−1)n+i(lk,j−1)). For eachk ∈ [1 : N ] and eachukj(lk,j−1),

lk,j−1 ∈ [1 : 2nR̂k ], randomly and conditionally independently generate2nR̂k sequenceŝykj(lkj|lk,j−1),

lkj ∈ [1 : 2nR̂k ], each according to
∏n

i=1 pŶk|Uk
(ŷk,(j−1)n+i|uk,(j−1)n+i(lk,j−1)). This defines the code-

book

Cj=
{

ukj(lk,j−1),xkj(mk|lk,j−1), ŷkj(lkj|lk,j−1) : mk ∈ [1 : 2nbRk ], lkj , lk,j−1 ∈ [1 : 2nR̂k ], k ∈ [1 : N ]
}

for j ∈ [1 : b].

Encoding: Let (m1, . . . ,mN ) be the messages to be sent. Each nodek ∈ [1 : N ], upon receivingykj at

the end of blockj ∈ [1 : b], finds an indexlkj such that

(ŷkj(lkj |lk,j−1),ykj ,ukj(lk,j−1)) ∈ T
(n)
ǫ′ ,

wherelk0 = 1, k ∈ [1 : N ], by convention. If there is more than one such index, choose one of them at

random. If there is no such index, choose an arbitrary index at random from[1 : 2nR̂k ]. Then each node

k ∈ [1 : N ] transmits the codewordxkj(mk|lk,j−1) in block j ∈ [1 : b].

Similarly as before, decoding is done by simultaneous jointtypical decoding, however, since we are

treating interference as noise, codewords corresponding to the unintended messages(mk : k ∈ Scd) are

discarded, which leads to the following.
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Decoding: At the end of blockb, decoderd ∈ ∪Nk=1Dk finds a unique index tuple(m̂kd : k ∈ Sd) such

that there exist some(l̂1j , . . . , l̂Nj), wherem̂kd ∈ [1 : 2nbRk ] andk 6= d andm̂dd = md, l̂kj ∈ [1 : 2nR̂k ],

k 6= d and l̂dj = ldj , j ∈ [1 : b], satisfying

((xkj(m̂kd|l̂k,j−1) : k ∈ Sd),u1j(l̂1,j−1), . . . ,uNj(l̂N,j−1),

ŷ1j(l̂1j |l̂1,j−1), . . . , ŷNj(l̂Nj |l̂N,j−1),ydj) ∈ T
(n)
ǫ

for all j ∈ [1 : b].

The analysis of the probability of error is delegated to Appendix B.

V. GAUSSIAN NETWORKS

We consider the additive white Gaussian noise (AWGN) network in which the channel output vector

for an input vectorXN is Y N = GXN + ZN , whereG ∈ RN×N is the channel gain matrix andZN

is a vector of independent additive white Gaussian noise with zero mean and unit variance. We assume

average power constraintP on each sender, i.e.,
n
∑

i=1

E
(

x2ki(mk, Y
i−1
k )

)

≤ nP

for all k ∈ [1 : N ] andmk ∈ [1 : 2nRk ]. For each cutsetS ⊆ [1 : N ], define a channel gain submatrix

G(S) such that

Y (Sc) = G(S)X(S) +G′(S)X(Sc) + Z(Sc).

In the following subsection, we prove Theorem 4. In Subsections V-B and V-C, we provide the capacity

inner bounds for the AWGN two-way relay channel and the AWGN interference relay channel used in

Figures 2 and 4.

A. AWGN Multicast Capacity Gap (Proof of Theorem 4)

The cutset outer bound for the AWGN multiple-source multicast network simplifies to the set of rate

tuples such that

∑

k∈S

Rk ≤
1

2
log

∣

∣

∣

∣

I +
P

2
G(S)G(S)T

∣

∣

∣

∣

+
1

2
min{|S|, |Sc|} log(2|S|) (22)

for all S ⊆ [1 : N ] with Sc ∩ D 6= ∅. To show this, first note that the cutset outer bound (4) continues

to hold with the set of input distributions satisfyingE(X2
k) ≤ P , k ∈ [1 : N ]. For eachS ⊆ [1 : N ] such
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thatSc ∩ D 6= ∅, we can further loosen the cutset outer bound as

R(S) ≤ I(X(S);Y (Sc)|X(Sc))

= h(Y (Sc)|X(Sc))− h(Y (Sc)|XN )

= h
(

G(S)X(S) + Z(Sc)|X(Sc)
)

− h(Y (Sc)|XN )

= h
(

G(S)X(S) + Z(Sc)
)

− h(Y (Sc)|XN )

=
1

2
log(2πe)|S

c|
∣

∣

∣
I +G(S)KX(S)G(S)T

∣

∣

∣
−
|Sc|

2
log(2πe)

≤
1

2
log
∣

∣

∣
I + tr(KX(S))G(S)G(S)T

∣

∣

∣
(23)

≤
1

2
log
∣

∣

∣I + |S|P ·G(S)G(S)T
∣

∣

∣ (24)

≤
1

2
log

∣

∣

∣

∣

2|S| · I + 2|S|
P

2
·G(S)G(S)T

∣

∣

∣

∣

≤
1

2
log

∣

∣

∣

∣

I +
P

2
G(S)G(S)T

∣

∣

∣

∣

+
|Sc|

2
log(2|S|),

whereKX(S) is the covariance matrix ofX(S), (23) follows sincetr(K)I −K is positive semidefinite

for any covariance matrixK [23, Theorem 7.7.3], and (24) follows sincetr(KX(S)) ≤ |S|P , from the

power constraint. By rewriting (24) as

1

2
log
∣

∣

∣I + |S|P ·G(S)G(S)T
∣

∣

∣ =
1

2
log
∣

∣

∣I + |S|P ·G(S)TG(S)
∣

∣

∣

and following similar steps, we also have

R(S) ≤
1

2
log

∣

∣

∣

∣

I +
P

2
G(S)TG(S)

∣

∣

∣

∣

+
|S|

2
log(2|S|)

=
1

2
log

∣

∣

∣

∣

I +
P

2
G(S)G(S)T

∣

∣

∣

∣

+
|S|

2
log(2|S|).

On the other hand, the noisy network coding inner bound in Theorem 1 yields the inner bound

characterized by the set of inequalities

R(S) ≤
1

2
log

∣

∣

∣

∣

I +
P

2
G(S)G(S)T

∣

∣

∣

∣

−
|S|

2
(25)

for all S ⊆ [1 : N ] with Sc ∩ D 6= ∅. To show this, first note that by the standard procedure [21],

Theorem 1 for the discrete memoryless network can be easily adapted for the AWGN network with

power constraint, which gives the inner bound (3) on the capacity region with (product) input distributions

satisfyingE(X2
k ) ≤ P , k ∈ [1 : N ].

Let Q = ∅ andXk, k ∈ [1 : N ], be i.i.d. Gaussian with zero mean and varianceP . Let

Ŷk = Yk + Ẑk, k ∈ [1 : N ],
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whereẐk, k ∈ [1 : N ], are i.i.d. Gaussian with zero mean and unit variance. Then for eachS ⊆ [1 : N ]

such thatSc ∩ D 6= ∅ andd ∈ D,

I(Ŷ (S);Y (S)|XN , Ŷ (Sc), Yd) ≤ I(Ŷ (S);Y (S)|XN )

= h(Ŷ (S)|XN )− h(Ŷ (S)|Y (S),XN )

=
|S|

2
log(4πe)−

|S|

2
log(2πe)

=
|S|

2
,

where the first inequality is due to the Markovity(Ŷ (Sc), Yd)→ (XN , Y (S))→ Ŷ (S). Furthermore,

I(X(S); Ŷ (Sc), Yd|X(Sc)) ≥ I(X(S); Ŷ (Sc)|X(Sc))

= h(Ŷ (Sc)|X(Sc))− h(Ŷ (Sc)|XN )

=
1

2
log(2πe)|S

c|
∣

∣2I +G(S)PG(S)T
∣

∣−
|Sc|

2
log(4πe)

=
1

2
log

∣

∣

∣

∣

I +
P

2
G(S)G(S)T

∣

∣

∣

∣

.

Therefore, by Theorem 1, a rate tuple(R1, . . . , RN ) is achievable if

R(S) <
1

2
log

∣

∣

∣

∣

I +
P

2
G(S)G(S)T

∣

∣

∣

∣

−
|S|

2

for all S ⊆ [1 : N ] such thatSc ∩D 6= ∅.

Comparing the cutset outer bound (22) and inner bound (25) completes the proof of Theorem 4.

B. AWGN Two-Way Relay Channels

Recall the model for the AWGN two-way relay channel (13) in Section II.

Rankov and Wittenben [16] showed that the amplify–forward (AF) coding scheme results in the inner

bound on the capacity region that consists of all rate pairs(R1, R2) such that

Rk <
1

2
log





ak +
√

a2k − b2k

2



 , k ∈ {1, 2}

for someα ≤
√

P/(g213P + g223P + 1), wherea1 := 1 + P (g2

12
+α2g2

32
g2

13
)

g2

32
α2+1 , a2 := 1 + P (g2

21
+α2g2

31
g2

23
)

g2

31
α2+1 ,

b1 :=
2Pαg32g13g12

g2

32
α2+1 , andb2 :=

2Pαg31g23g21
g2

31
α2+1 . They also showed that an extension of the original compress–

forward (CF) coding scheme for the relay channel to the two-way relay channel results in the following
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inner bound on the capacity region that consists of all rate pairs (R1, R2) such that

R1 < C

(

g213P + (1 + σ2)g212P

1 + σ2

)

,

R2 < C

(

g223P + (1 + σ2)g221P

1 + σ2

)

for some

σ2 ≥ max

{

(1 + g212P )(1 + g213P )− (g12g13P )2

min{g232, g
2
31}P

,
(1 + g221P )(1 + g223P )− (g21g23P )2

min{g232, g
2
31}P

}

.

Specializing Theorem 2 to the two-way relay channel gives the inner bound that consists of all rate

pairs (R1, R2) such that

R1 ≤ min{I(X1;Y2, Ŷ3|X2,X3, Q), I(X1,X3;Y2|X2, Q)− I(Y3; Ŷ3|X1,X2,X3, Y2, Q)}

R2 ≤ min{I(X2;Y1, Ŷ3|X1,X3, Q), I(X2,X3;Y1|X1, Q)− I(Y3; Ŷ3|X1,X2,X3, Y1, Q)}

for somep(q)p(x1|q)p(x2|q)p(x3|q)p(ŷ3|y3, x3, q). By settingQ = ∅ andŶ3 = Y3+Ẑ with Ẑ ∼ N(0, σ2),

this inner bound simplifies to the set of rate pairs(R1, R2) such that

R1 < min

{

C

(

g213P + (1 + σ2)g212P

1 + σ2

)

, C(g212P + g232P )− C(1/σ2)

}

,

R2 < min

{

C

(

g223P + (1 + σ2)g221P

1 + σ2

)

, C(g221P1 + g231P )− C(1/σ2)

}

(26)

for someσ2 > 0.

C. AWGN Interference Relay Channels

Recall the model for the AWGN interference relay channel with orthogonal receiver components in

Figure 4.

Djeumou, Belmaga, and Lasaulce [18], and Razaghi and Yu [19]showed that an extension of the

original compress–forward (CF) coding scheme for the relaychannel to the two-way relay channel

results in the inner bound on the capacity region that consists of all rate pairs(R1, R2) such that

R1 < C

(

(g213 + (1 + σ2)g214)P + (g23g14 − g24g13)
2P 2

1 + σ2 + (g223 + (1 + σ2)g224)P

)

,

R2 < C

(

(g223 + (1 + σ2)g225)P + (g13g25 − g15g23)
2P 2

1 + σ2 + (g213 + (1 + σ2)g215)P

)

for some

σ2 ≥
1

22R0 − 1
·max

{

(g13g24 − g23g14)
2P 2 + a1

(g214P + g224P + 1)
,
(g13g25 − g23g15)

2P 2 + a2
(g215P + g225P + 1)

}

,
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where

a1 := (g213 + g214)P + (g223 + g224)P + 1,

a2 := (g213 + g215)P + (g223 + g225)P + 1.

Razaghi and Yu [19] generalized the hash–forward coding scheme [24], [11] for the relay channel to

the interference relay channel, in which the relay sends thebin index (hash) of its noisy observation and

destination nodes use list decoding. This generalized hash–forward scheme gives the inner bound on the

capacity region that consists of the set of rate pairs(R1, R2) such that

R1 < C

(

g214P

g224P + 1

)

+R0 − C

(

(g223 + g224)P + 1

(g224P + 1)σ2

)

,

R2 < C

(

g225P

g215P + 1

)

+R0 − C

(

(g213 + g215)P + 1

(g215P + 1)σ2

)

for someσ2 > 0 satisfying

σ2 ≤
1

22R0 − 1
·min

{

(g13g24 − g23g14)
2P 2 + a1

(g214P + g224P + 1)
,
(g13g25 − g23g15)

2P 2 + a2
(g215P + g225P + 1)

}

,

wherea1 anda2 are the same as above.

Specializing Theorem 2 by settinĝY3 = Y3+ Ẑ with Ẑ ∼ N(0, σ2) gives the inner bound that consists

of all rate pairs(R1, R2) such that

R1 < min

{

C(g214P ) +R0 − C(1/σ2), C

(

(g213 + (1 + σ2)g214)P

1 + σ2

)}

,

R2 < min

{

C(g225P ) +R0 − C(1/σ2), C

(

(g223 + (1 + σ2)g225)P

1 + σ2

)}

,

R1 +R2 < C((g214 + g224)P ) +R0 − C(1/σ2),

R1 +R2 < C

(

(g213 + g223)P + (1 + σ2)(g214 + g224)P + (g13g24 − g23g14)
2P 2

1 + σ2

)

,

R1 +R2 < C((g215 + g225)P ) +R0 − C(1/σ2),

R1 +R2 < C

(

(g213 + g223)P + (1 + σ2)(g225 + g215)P + (g23g15 − g13g25)
2P 2

1 + σ2

)

for someσ2 > 0. By the same choice of̂Y3, the inner bound in Theorem 3 can be specialized to the set

of rate pairs(R1, R2) such that

R1 < C

(

g214P

g224P + 1

)

+R0 − C

(

(g223 + g224)P + 1

(g224P + 1)σ2

)

,

R1 < C

(

(g213 + (1 + σ2)g214)P + (g23g14 − g24g13)
2P 2

1 + σ2 + (g223 + (1 + σ2)g224)P

)

,

R2 < C

(

g225P

g215P + 1

)

+R0 − C

(

(g213 + g215)P + 1

(g215P + 1)σ2

)

,

March 15, 2010 DRAFT



25

R2 < C

(

(g223 + (1 + σ2)g225)P + (g13g25 − g15g23)
2P 2

1 + σ2 + (g213 + (1 + σ2)g215)P

)

for someσ2 > 0.

VI. CONCLUDING REMARKS

We presented a new noisy network coding scheme and used it to establish inner bounds on the capacity

region of general multiple-source noisy networks. This scheme unifies and extends previous results on

network coding and its extensions, and on compress–forwardfor the relay channel. We demonstrated

that the noisy network coding scheme can outperform previous network compress–forward schemes.

The reasons are: first, the relays do not use Wyner–Ziv coding(no binning index to decode), second,

the destinations are not required to decode the compressionindices correctly, and third, simultaneous

decoding over all blocks is used.

How good is noisy network coding as a general purpose scheme?As we have seen, noisy network

coding is optimal in some special cases. It also performs generally well under high SNR conditions in

the network. In addition, it is a robust and scalable scheme in the sense that the relay operations do

not depend on the specific codebooks used by the sources and destinations or even the topology of the

network. Noisy network coding, however, is not always the best strategy. For example, for a cascade

of AWGN channels with low SNR, the optimal strategy is for therelay to decode the message and

then forward it to the final destination. This simple multi-hop scheme can be improved by using the

information from multiple paths and coherent cooperation as in the decode–forward scheme for the relay

channel [10] and its extensions to networks [25], [14]. Further improvement can be obtained by only

partial decoding of messages at the relays [10], and by combining noisy network coding with partial

decode–forward to obtain the type of hybrid schemes in [10] and [14].

Another important direction to improve noisy network coding for multiple sources is to use more

sophisticated interference coding schemes, such as interference alignment [26] and Han–Kobayashi

superposition coding [27].
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APPENDIX A

ERROR PROBABILITY ANALYSIS FOR THEOREM 2

The analysis follows the same steps of the multicast case except that the union in the third error term

of (17) is over allm such that(mk : k ∈ Sd) 6= (1, . . . , 1). Thus,

P(∪mEm)

≤
∑

m

∑

lb

b
∏

j=2

P(Aj(m, lj−1, lj))

≤
∑

T ⊆[1:N ]
T ∩Sd 6=∅,d∈T c

2
∑

k∈T nbRk 2
∑

k 6=d
nR̂k2(N−1)(b−1) 2n(−(b−1)minS(I1(S)+I2(S)−

∑
k∈S

R̂k−δ(ǫ))), (27)

where the minimum in (27) is overS ⊆ [1 : N ] such thatT ⊆ S, d ∈ Sc. Hence, (27) tends to zero as

n→∞ if

R(T ) <
b− 1

b



 min
S⊆[1:N ]

T ⊆S,d∈Sc

(

I1(S) + I2(S)−
∑

k∈S

R̂k

)

− δ(ǫ)



 −
1

b





∑

k 6=d

R̂k





for all T ⊆ [1 : N ] such thatT ∩Sd 6= ∅ andd ∈ T c. By eliminatingR̂k > I(Ŷk;Yk|Xk)+ δ(ǫ′), letting

b→∞, and getting rid of inactive inequalities, the probabilityof error tends to zero asn→∞ if

R(S) < I(X(S); Ŷ (Sc), Yd|X(Sc))− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), Yd)− (N − 1)δ(ǫ′)− δ(ǫ), (28)

for all S ⊆ [1 : N ] such thatS ∩ Sd 6= ∅ andd ∈ Sc. Thus, the probability of decoding error tends to

zero for each destination noded ∈ D asn → ∞, provided that the rate tuple satisfies (28). Finally, by

the union of events bound, the probability of error for all destinations tends to zero asn → ∞ if the

rate tuple(R1, . . . , RN ) satisfies

R(S) < min
d∈Sc∩D(S)

I(X(S); Ŷ (Sc), Yd|X(Sc))− I(Y (S); Ŷ (S)|XN , Ŷ (Sc), Yd)

for all S ⊆ [1 : N ] such thatSc∩D(S) 6= ∅ for some
∏N

k=1 p(xk)p(ŷk|yk, xk). This completes the proof

of Theorem 2 forQ = ∅. The proof for the generalQ follows by coded time sharing.

APPENDIX B

ERROR PROBABILITY ANALYSIS FOR THEOREM 3

Let Mk denote the message sent at nodek ∈ [1 : N ] andLkj, k ∈ [1 : N ], j ∈ [1 : b], denote the index

chosen by nodek for block j. To bound the probability of error for decoderd ∈ D, assume without loss
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of generality that(M1, . . . ,MN ) = (1, . . . , 1) = 1. Define

E0 :=
b
⋃

j=1

N
⋃

k=1

{

(Ŷkj(lkj|Lk,j−1),Ukj(Lk,j−1),Ykj) 6∈ T
(n)
ǫ′ for all lkj

}

Em :=
{

({Xkj(mk|lk,j−1) : k ∈ Sd},U1j(l1,j−1), . . . ,UNj(lN,j−1),

Ŷ1j(l1j |l1,j−1), . . . , ŶNj(lNj |lN,j−1),Ydj) ∈ T
(n)
ǫ , j ∈ [1 : b],

for some(l1, . . . , lb), whereldj = Ldj , j ∈ [1 : b]
}

.

Here,m := (mk : k ∈ Sd) and lj = (l1j , . . . , lNj) for j ∈ [1 : b]. Then the probability of error is upper

bounded asP(E) ≤ P(E0) + P(Ec0 ∩ E
c
1
) + P(∪m 6=1Em), wheremd = 1 in m. By the covering lemma,

P(E0) → 0 as n → ∞, if R̂k > I(Ŷk;Yk|Uk) + δ(ǫ′), k ∈ [1 : N ], and by the conditional typicality

lemmaP(Ec0 ∩ E
c
1
)→ 0 asn→∞. For the third term, assume thatL1 = · · · = Lb = 1. Define

Aj(m, lj−1, lj) := {({Xkj(mk|lk,j−1) : k ∈ Sd},U1j(l1,j−1), . . . ,UNj(lN,j−1),

Ŷ1j(l1j |l1,j−1), . . . , ŶNj(lNj |lN,j−1),Ydj) ∈ T
(n)
ǫ }

for m 6= 1 and all lj . Then, from similar steps to the multicast case,

P(Em) ≤
∑

lb

b
∏

j=2

P(Aj(m, lj−1, lj)).

For eachlb and j ∈ [2 : b], let Sj(lb) ⊆ [1 : N ] such thatSj(lb) = {k : lk,j−1 6= 1}. We further define

T (m) ⊆ [1 : N ] such thatT (m) = {k : k ∈ Sd,mk 6= 1}. By definition,d ∈ T c(m) ∩ Scj (lj−1), where

T c(m) := Sd\T (m). Then, by the joint typicality lemma, we can show that

P(Aj(m, lj−1, lj)) ≤ 2−n(I1(S(lj−1),T (m))+I2(S(lj−1),T (m))−δ(ǫ)),

where

I1(S,T ) := I(X((S ∪ T ) ∩ Sd), U(S); Ŷ (Sc), Yd|X((Sc ∩ T c) ∩ Sd), U(Sc)), and

I2(S,T ) :=
∑

k∈S

I(Ŷk; Ŷ (Sc ∪ {k′ ∈ S : k′ < k}), Yd,X(Sd), U
N |Uk).

Furthermore from the definitions ofT (m) andSj(lj−1), if m 6= 1 with md = 1, then

∑

lj−1

2−n(I1(Sj(lj−1),T (m))+I2(Sj(lj−1),T (m))−δ(ǫ))

≤
∑

S⊆[1:N ]:d∈Sc

2−n(I1(S,T (m))+I2(S,T (m))−
∑

k∈S
R̂k−δ(ǫ))

≤ 2N−12−n(minS(I1(S,T (m))+I2(S,T (m))−
∑

k∈S R̂k−δ(ǫ))).
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Hence,

∑

m 6=1

∑

lb

b
∏

j=2

P(Aj(m, lj−1, lj))

=
∑

m 6=1

∑

lb

∑

lb−1

b
∏

j=2

P(Aj(m, lj−1, lj))

=
∑

m 6=1

∑

lb

b
∏

j=2

∑

lj−1

P(Aj(m, lj−1, lj))

≤
∑

m 6=1

∑

lb

b
∏

j=2





∑

lj−1

2−n(I1(Sj(lj−1),T (m))+I2(Sj(lj−1),T (m))−δ(ǫ))





≤
∑

m 6=1

∑

lb

b
∏

j=2

(

2N−12−n(minS(I1(S,T (m))+I2(S,T (m))−
∑

k∈S
R̂k−δ(ǫ)))

)

≤
∑

T ⊆Sd

T 6=∅,d∈T c

2
∑

k∈T
nbRk 2

∑
k 6=d

nR̂k2(N−1)(b−1) 2n(−(b−1)minS(I1(S,T )+I2(S,T )−
∑

k∈S
R̂k−δ(ǫ))), (29)

where the minimum in (29) is overS ⊆ [1 : N ] such thatd ∈ Sc. Hence, (29) tends to zero asn→∞

if

R(T ) <
b− 1

b

(

min
S⊆[1:N ],d∈Sc

(

I1(S,T ) + I2(S,T )−
∑

k∈S

R̂k

)

− δ(ǫ)

)

−
1

b





∑

k 6=d

R̂k





for all T ⊆ Sd such thatd ∈ T c. By eliminating R̂k > I(Ŷk;Yk|Uk) + δ(ǫ′) and lettingb → ∞, the

probability of error tends to zero asn→∞ if

R(T ) < min
S⊆[1:N ],d∈Sc

(

I1(S,T ) + I2(S,T )−
∑

k∈S

I(Ŷk;Yk|Uk)

)

− (N − 1)δ(ǫ′)− δ(ǫ)

for all T ⊆ Sd such thatd ∈ T c. Finally, note that

I2(S,T )−
∑

k∈S

I(Ŷk;Yk|Uk) = −
∑

k∈S

I(Ŷk;Yk|X(Sd), U
N , Ŷ (Sc), Yd, Ŷ ({k′ ∈ S : k′ < k}))

= −
∑

k∈S

I(Ŷk;Y (S)|X(Sd), U
N , Ŷ (Sc), Yd, Ŷ ({k′ ∈ S : k′ < k}))

= −I(Ŷ (S);Y (S)|X(Sd), U
N , Ŷ (Sc), Yd).

Therefore, the probability of error tends to zero asn→∞ if

R(T ) < I(X((S ∪ T ) ∩ Sd), U(S); Ŷ (Sc), Yd|X((Sc ∩ T c) ∩ Sd), U(Sc))

− I(Ŷ (S);Y (S)|X(Sd), U
N , Ŷ (Sc), Yd)− (N − 1)δ(ǫ′)− δ(ǫ) (30)
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for all S ⊆ [1 : N ] andT ⊆ Sd such thatd ∈ Sc andd ∈ T c. Since for everyS ⊆ [1 : N ], d ∈ Sc the

inequalities corresponding toT ( (S ∩ Sd) are inactive due to the inequality withT = S ∩ Sd in (30),

the set of inequalities can be further simplified to

R(T ) < I(X(T ),U(S); Ŷ (Sc), Yd|X(T c), U(Sc))

− I(Y (S); Ŷ (S)|X(Sd), U
N , Ŷ (Sc), Yd)− (N − 1)δ(ǫ′)− δ(ǫ) (31)

for all S ⊆ [1 : N ] andS ∩ Sd ⊆ T ⊆ Sd such thatd ∈ Sc, whereT c = Sd\T . Thus, the probability

of decoding error tends to zero for each destination noded ∈ D asn→∞, provided that the rate tuple

satisfies (31). By the union of events bound, the probabilityof error tends to zero asn→∞ if the rate

tuple (R1, . . . , RN ) satisfies

R(T ) <I(X(T ), U(S); Ŷ (Sc), Yd|X(T c), U(Sc))− I(Y (S); Ŷ (S)|X(Sd), U
N , Ŷ (Sc), Yd)

for all S ⊆ [1 : N ], d ∈ D(S), andS ∩ Sd ⊆ T ⊆ Sd such thatSc ∩ D(S) 6= ∅, whereT c = Sd\T

for some
∏N

k=1 p(xk)p(ŷk|yk, xk). This completes the proof of Theorem 3 forQ = ∅. The proof for the

generalQ follows by coded time sharing.

APPENDIX C

COMPARISON TO APREVIOUS EXTENSION OF THEORIGINAL COMPRESS–FORWARD SCHEME

For a DM single-source (node 1) multicast network with destination nodesD ⊆ [2 : N ], a hybrid

scheme proposed by Kramer, Gastpar, and Gupta [14, Theorem 3] gives the capacity lower bound

C ≥ maxmin
d∈D

I(X1; Ŷ
N
2 , Yd|U

N
2 ,XN

2 ), (32)

where the maximum is overp(x1)
∏N

k=2 p(uk, xk)p(ŷk|u
N
2 , xk, yk) such that

I(Ŷ (T );Y (T )|UN
2 ,XN

2 , Ŷ (T c), Yd) +
∑

k∈T

I(Ŷk;X
N
2 |U

N
2 ,Xk)

≤ I(X(T );Yd|U(T ),X(T c), Ud,Xd) +

T
∑

t=1

I(U(Kt);Yr(t)|U(Kc
t ),Xr(t)) (33)

for all T ⊆ [2 : N ], all partitions{Kt}
T
t=1 of [2 : N ], and allr(t) ∈ [2 : N ] such thatr(t) 6∈ Kt. The

complementsT c andKc
t are the complements of the respectiveT andKt in [2 : N ].

The hybrid coding scheme achieving lower bound (32) uses an extension of the original compress–

forward scheme for the relay channel as well as decoding of the compression indices at the relays. The

pure compress–forward scheme without decoding gives the capacity lower bound

C ≥ R∗ = maxmin
d∈D

I(X1; Ŷ
N
2 , Yd|X

N
2 ), (34)
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where the maximum is over all pmfs
∏N

k=1 p(xk)p(yk|xk) such that

I(Y (T ); Ŷ (T )|XN
2 , Ŷ (T c), Yd) +

∑

k∈T

I(XN
2 ; Ŷk|Xk) ≤ I(X(T );Yd|X(T c),Xd)

for all T ⊆ [2 : N ] andT c = [2 : N ]\T . This is identical to (32) withUj = ∅, j ∈ [2 : N ].

In the following we show that the noisy network coding lower bound in Theorem 1 is uniformly better

than lower bound (34) for everyp(yN2 |x
N ). By using similar steps to those in [15, Appendix C] and

some algebra, lower bound (34) can be upper bounded as

R∗ ≤ maxmin
d∈D

min
T ⊆[2:N ]

I(X1; Ŷ
N
2 , Yd|X

N
2 ) + I(X(T );Yd|X(T c),Xd)

− I(Ŷ (T );Y (T )|XN
2 , Ŷ (T c), Yd)−

∑

k∈T

I(Ŷk;X
N
2 |Xk)

= maxmin
d∈D

min
T ⊆[2:N ]

I(X1,X(T ); Ŷ (T c), Yd|X(T c),Xd)− I(Ŷ (T );Y (T )|XN , Ŷ (T ), Yd)

− I(X(T ); Ŷ (T c)|Yd,X(T c),Xd)−
∑

k∈T

I(Ŷk;X
N
2 |Xk), (35)

where the maximums are overp(x1)
∏N

k=2 p(xk)p(ŷk|xk, yk). Here equality (35) follows since

I(X1; Ŷ
N
2 , Yd|X

N
2 ) + I(X(T );Yd|X(T c),Xd)− I(Ŷ (T );Y (T )|XN

2 , Ŷ (T c), Yd)

= I(X1; Ŷ (T c), Yd|X
N
2 ) + I(X1; Ŷ (T )|XN

2 , Ŷ (T c), Yd)

+ I(X(T );Yd|X(T c),Xd)− I(Ŷ (T );Y (T )|XN
2 , Ŷ (T c), Yd)

= I(X1; Ŷ (T c), Yd|X
N
2 ) + I(X1; Ŷ (T )|XN

2 , Ŷ (T c), Yd) + I(X(T ); Ŷ (T c), Yd|X(T c),Xd)

− I(X(T ); Ŷ (T c)|X(T c), Yd,Xd)− I(Ŷ (T );Y (T )|XN
2 , Ŷ (T c), Yd)

= I(X1,X(T ); Ŷ (T c), Yd|X(T c),Xd) + I(X1; Ŷ (T )|XN
2 , Ŷ (T c), Yd)

− I(X(T ); Ŷ (T c)|X(T c), Yd,Xd)− I(Ŷ (T );Y (T )|XN
2 , Ŷ (T c), Yd)

= I(X1,X(T ); Ŷ (T c), Yd|X(T c),Xd) + I(X1, Y (T ); Ŷ (T )|XN
2 , Ŷ (T c), Yd)

− I(Y (T ); Ŷ (T )|X1,X
N
2 , Ŷ (T c), Yd)− I(X(T ); Ŷ (T c)|X(T c), Yd,Xd)

− I(Ŷ (T );Y (T )|XN
2 , Ŷ (T c), Yd)

= I(X1,X(T ); Ŷ (T c), Yd|X(T c),Xd) + I(X1; Ŷ (T )|XN
2 , Ŷ (T c), Y (T ), Yd)

− I(Y (T ); Ŷ (T )|X1,X
N
2 , Ŷ (T c), Yd)− I(X(T ); Ŷ (T c)|X(T c), Yd,Xd)

= I(X1,X(T ); Ŷ (T c), Yd|X(T c),Xd)− I(Y (T ); Ŷ (T )|X1,X
N
2 , Ŷ (T c), Yd)

− I(X(T ); Ŷ (T c)|X(T c), Yd,Xd)
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for all T ⊆ [2 : N ], T c = [2 : N ]\T and d ∈ D, where the last equality follows from the Markovity

(X1,X(T c),Xd, Ŷ (T c), Yd)→ (X(T ), Y (T ))→ Ŷ (T ). On the other hand, Theorem 1 can be simplified

by settingQ = ∅ andR2 = · · · = RN = 0 as

C ≥ max∏
N

k=1
p(xk)p(ŷk|yk,xk)

min
d∈D

min
T ⊆[2:N ]

I(X1,X(T ); Ŷ (T c), Yd|X(T c),Xd) (36)

− I(Y (T ); Ŷ (T )|XN , Ŷ (T c), Yd),

whereT c = [2 : N ]\T . Thus, Theorem 1 achieves a higher rate than (34) with gap

I(X(T ); Ŷ (T c)|Yd,X(T c),Xd) +
∑

k∈T

I(Ŷk;X
N
2 |Xk)

for eachd ∈ D andT ⊆ [2 : N ].

We now present a simple example for which noisy network coding performs strictly better than the

general hybrid scheme (32). Consider a 4-node noiseless network, whereD = {4}, R2 = R3 = R4 = 0,

andY2 = X1, Y3 = X2, Y4 = X3 are all binary. From (5), we know that that the noisy network coding

lower bound achieves the capacityC = 1. On the other hand, applying (32) to the above noiseless

network we get

I(X1; Ŷ2, Ŷ3, Y4|U2, U3,X2,X3) = I(X1; Ŷ2, Ŷ3|U2, U3,X2,X3) (37)

= I(X1; Ŷ2|U2, U3,X2,X3, Ŷ3) (38)

where (37) follows from the channel and (38) follows from theMarkovity X1 → (U2, U3,X3, Y3)→ Ŷ3.

The constraint (33) corresponding toT = {2} andr(1) = 4 is

I(Ŷ2;Y2|U2, U3,X2,X3, Ŷ3, Y4) + I(Ŷ2;X3|U2, U3,X2) ≤ I(X2;Y4|U2, U3,X3) + I(U2;Y4|U3),

which can be simplified as

I(X1; Ŷ2|U2, U3,X2,X3, Ŷ3) ≤ I(U2;X3|U3)− I(Ŷ2;X3|U2, U3,X2)

≤ I(U2;X3|U3)

= 0,

where the equality follows fromU2 → U3 → X3. Thus, the achievable rate of the hybrid scheme is zero

for this particular example. It can be easily seen that our noisy network coding scheme outperforms the

hybrid scheme for noiseless networks with more than two relays. Note that in general, due to decoding at

the relay nodes, the hybrid scheme can sometimes perform better than the noisy network coding scheme

without similar augmentation.
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